

Home Search Collections Journals About Contact us My IOPscience

Exponent v_{perp} for 2D directed compact site animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 3405

(http://iopscience.iop.org/0305-4470/21/16/019)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 01/06/2010 at 05:58

Please note that terms and conditions apply.

COMMENT

Exponent ν_{\perp} for 2D directed compact site animals

V K Bhat, H L Bhan and Y Singh

Department of Physics, University of Kashmir, Srinagar-190006, Kashmir, India

Received 7 March 1988

Abstract. We obtain the transverse cluster radius exponent $\nu_{\perp} = 0$ for 2D directed compact animals. We find that the exponent ν_{\perp} takes two different values which depend on definition of the animal width.

Recently, a lot of attention has been given to the studies of directed compact lattice animals (Derrida and Nadal 1984, Bhat *et al* 1986, 1987, Privman and Forgacs 1987). The number F_N of distinct N-site animals grows according to

$$F_N \sim \bar{N}^{\theta} \lambda^N$$
 as $N \to \infty$ (1)

where θ is a critical exponent and λ is a lattice-dependent growth parameter. The generating function for all animals is represented as

$$F(x) = \sum_{N=0}^{\infty} F_N x^N.$$
 (2)

It exhibits a power law singularity of the form

$$F(x) \sim |x_c - x|^{\theta - 1} \qquad \text{as } x \to x_c. \tag{3}$$

For the fully directed compact site animal model (Bhat *et al* 1986, 1987), relation (1) applies with $\theta = 0$ and $\lambda = 2.66185 \pm (5)$. This implies that the singularity of F(x) nearest to the origin is a simple pole at $x = x_c$. The exponents describing length and width of the animals were predicted to be $\nu_{\parallel} = 1$ and $\nu_{\perp} = \frac{1}{2}$ respectively (Bhat *et al* 1987). Recently, Privman and Forgacs (1987) have shown analytically that the animal number exponent $\theta = 0$ for partially directed compact animals.

In this comment, we estimate the transverse cluster radius exponent ν_{\perp} for fully directed compact lattice animals in two dimensions. We observe that the exponent ν_{\perp} takes two values, which depend on the definition of width.

For two-dimensional directed compact site animals, one can write

$$mass \sim (\xi_{\parallel}\xi_{\perp}) \tag{4}$$

or

$$N \sim (\xi_{\parallel} \xi_{\perp})$$

where ξ_{\perp} and ξ_{\parallel} are the transverse and longitudinal cluster radii respectively. From equation (4) one obtains

$$\boldsymbol{\nu}_{\parallel} + \boldsymbol{\nu}_{\perp} = \boldsymbol{1}. \tag{5}$$

0305-4470/88/163405+03\$02.50 © 1988 IOP Publishing Ltd 3405

In the case of a directed compact animal on a square lattice, all the sites which are not in the root can be reached from at least one root site by a directed walk of +Xor +Y steps between the cluster sites. This implies that ξ_{\parallel} equals $N/\sqrt{2}$ and hence $\nu_{\parallel} = 1$ (Bhat *et al* 1987). Thus equation (5) yields $\nu_{\perp} = 0$. The above result can also be obtained by relating mass to the volume of the cluster (Kinzel 1983, de Queiroz 1984). We write

$$(mass) \sim (volume)^{d_t/d}$$

(6)

or

$$N \sim (\xi_{\parallel} \xi_{\perp}^{d-1})^{d_t/d}$$

where $d_{\rm f}$ is the fractal dimension of the cluster.

From equation (6), we obtain

$$d_{\rm f} = \frac{d}{[\nu_{\parallel} + \nu_{\perp}(d-1)]}.$$
(7)

If d_f is less than the spatial dimension d, the animals are highly ramified structures; if $d_f = d$, they are compact (Family and Coniglio 1980). With this argument (i.e. $d_f = d$) and $\nu_{\parallel} = 1$ for two-dimensional directed compact animals, one obtains from equation (7), $\nu_{\perp} = 0$.

The exponent $\nu_{\perp} = 0$ implies that ξ_{\perp} stays finite as $N \rightarrow \infty$ or increases at the most logarithmically. It governs the width of the animal at fixed x. The exponent $\nu_{\perp} = \frac{1}{2}$ (Bhat *et al* 1987) governs the width of the full animal, i.e. size of the strip to which the animal is confined.

For a strip which is finite in one direction and infinite in the other, the shift in the critical temperature is proportional to $m^{-1/\nu_{-}}$ (Nadal *et al* 1982, Derrida and De Seze 1982). One can thus use finite-size scaling theory, which predicts

$$x_c(m) = x_c(\infty) + A/m^{1/\nu}.$$
(8)

where m is the width of the strip and A is a constant. For directed compact animals, we expect the following behaviour:

$$\mathbf{x}_{c}(m) = \mathbf{x}_{c}(\infty) + \mathbf{B} \, \mathbf{e}^{-mC} \tag{9}$$

where B and C are constants. From equations (8) and (9) we find that

$$1/\nu_{\perp} = \infty$$

or

 $\nu_{\perp}=0.$

This result for the exponent ν_{\perp} satisfies the scaling relation $\theta = \nu_{\perp}(d-1)$ in d=2 (Family 1982). Future work may lead to the determination of the exponents in higher dimensions and thus a relationship could be established between the exponents θ , ν_{\parallel} and ν_{\perp} .

Acknowledgment

The authors wish to thank Dr Deepak Dhar for helpful correspondence.

References

Bhat V K, Bhan H L and Singh Y 1986 J. Phys. A: Math. Gen. 19 3261

- De Queiroz S L A 1984 J. Phys. A: Math. Gen. 17 L585
- Derrida B and De Seze L 1982 J. Physique 43 475
- Derrida B and Nadal J P 1984 J. Physique Lett. 45 701
- Family F 1982 J. Phys. A: Math. Gen. 15 L583
- Family F and Coniglio A 1980 J. Phys. A: Math. Gen. 13 L97
- Kinzel W 1983 Percolation Structures and Processes ed G Deutsher, R Zallen and J Alder (Bristol: Adam Hilger) p 425
- Nadal J P, Derrida B and Vannimenus J 1982 J. Physique 43 1561
- Privman V and Forgacs G 1987 J. Phys. A: Math. Gen. 20 L543